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Long-term variability in the ocean’s thermohaline circulation has attracted 
considerable attention recently in the context of past and future climate change. 
Drastic circulation changes are documented in paleoceanographic data and have 
been simulated by general circulation models of the ocean. The mechanism of 
spontaneous, abrupt changes in thermohaline circulation is studied here in an 
idealized context, using a two-dimensional Boussinesq fluid in a rectangular 
container, over 5 decades of Rayleigh number. 

When such a fluid is forced with a specified distribution of temperature and 
salinity at the surface - symmetric about a vertical axis - it attains a stable two-cell 
circulation, with the same symmetry. On the other hand, replacement of the specified 
salinity surface condition with an appropriate symmetric salt-flux condition leads to 
loss of stability of the symmetric circulation and gives rise to a new, asymmetric 
state. The extent of asymmetry depends on the magnitude of the thermal Rayleigh 
number, Ra, and on the strength of the salinity flux, y. An approximate stability 
curve in the y-Ra space, dividing the symmetric from the asymmetric states, is 
obtained numerically, and the entire range of asymmetric flows, from very slight 
dominance of one cell to its complete annihilation of the other cell, is explored. The 
physical mechanism of the pitchfork bifurcation from symmetric to asymmetric 
states is outlined. The effects of three other parameters of the problem are also 
discussed, along with implications of our results for glaciation cycles of the 
geological past and for interdecadal oscillations of the present ocean-atmosphere 
system. 

1. Introduction and motivation 
The problem of thermal convection in an enclosed fluid is mathematically well 

known and physically interesting in both stationary and rotating frames of reference 
(Batchelor 1954; Gill 1966; McIntyre 1968; Daniels & Stewartson 1977, 1978; Quon 
1980, 1983 ; and others). However, thermosolutal convection in a fluid with density 
dependent on both heat and salt content is a far more difficult and far less completely 
explored problem (Turner 1973); such a fluid is sometimes said to have two 
components, although it has uniform physics (one phase) and chemistry (one 
constituent). 

In  the last few years, physical oceanographers have discovered from Ocean 
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General Circulation Model (OGCM) experiments that even when the imposed 
boundary conditions at the ocean surface are symmetric about the equator, a zonally 
averaged circulation can arise which is meridionally asymmetric (Bryan 1986 ; Maier- 
Reimer & Mikolajewicz 1989; Weaver & Sarachik 1991). These OGCM results 
buttressed earlier multiple equilibria obtained with box models, which were 
summarized recently by Welander (1986) and by Thual & MeWilliams (1992). 

The problem can be illustrated in the following simple idealized form. Let us 
represent a zonally averaged ocean by a slender rectangular box which is filled with 
a salt solution, and assume that three sides of the box, say, the sidewalls and the 
bottom, are insulated and are impermeable to salt. At the top boundary, identical 
symmetric functions of temperature, T, and salinity, S, are maintained at all times. 
Following previous workers, we shall call these ‘restoring boundary conditions ’. The 
unique steady-state solution of this fluid system consists of two cells which are 
symmetric about the vertical centreline of the enclosure as shown later. From this 
steady state one can calculate the salt flux across the top of the enclosure. 

Now let us consider a second idealized problem as follows. We shall use the same 
restoring condition for the temperature as in the first problem, but across the top 
boundary replace the prescribed salinity with a salt-flux condition, which is 
calculated from the steady state of the first problem. Theoretically the solution of the 
first problem is also a solution of the second one. The solution for the salinity 
equation of the second problem is, however, no longer unique, because all boundary 
conditions imposed on i t  are now in flux form, i.e. the salinity equation has Neumann 
rather than Dirichlet boundary conditions. If we add any constant to the original 
solution, the result is also a solution. 

The usual remedy for this non-uniqueness is to add a compatibility condition. The 
additive constant in the salinity, however, does not affect the flow fields, which 
depend on the density gradient - rather than on the density - of the fluid. For the 
problem studied in this paper, such a compatibility condition need therefore not be 
applied. For some of the experiments, the average S over the enclosure was 
subtracted from S at each grid point for every time step. This procedure eliminates 
the linear trend in S as a function of time, but it does not affect the flow fields and 
the temperature field. 

It turns out that  in the second problem with a salt-flux condition, the two-cell 
solution is unstable to  infinitesimal perturbations. The circulation to which the 
flow stabilizes is asymmetric about the vertical centreline in the sense that one cell 
becomes larger than the other. I n  fact, for sufficiently high Rayleigh number, the flux 
condition transforms the two-cell into a one-cell circulation. Since the asymmetry 
can take on two forms, i.e. the larger cell can either be on the right or on the left, the 
transition from symmetric to asymmetric flow arises as a pitchfork bifurcation 
(Guckenheimer & Holmes 1983 ; Ghil & Childress 1987). A bifurcation diagram based 
on our numerical experiments is presented in Appendix C (figure 16). Thus the oceans 
can acquire quite different steady states if a salt-flux condition is used instead of a 
restoring condition. The former is a more realistic boundary condition for the oceans, 
where it corresponds to  a given evaporation-minus-precipitation flux. 

I n  the case of the Atlantic Ocean, the zonally averaged meridional circulation is 
at present a one-cell circulation from pole to pole instead of a two-cell circulation 
symmetric about the equator. The latter is the expected response to  a forcing 
function symmetric about the equator. The surface flow in the Atlantic is from south 
to  north. At high latitudes there are small sinking regions where the warm salty 
water transported north from the equator is cooled down by atmospheric conditions, 
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and sinks in the form of deep convection. The cold waters resulting from deep 
convection make up a return flow southward in the abyssal regions of the Atlantic 
Ocean. This picture of the general circulation of an ocean is highly simplified. In  fact 
the Pacific Ocean behaves quite differently from the Atlantic, with waters rising in 
its northern part. The Atlantic and the Pacific oceans interact dynamically through 
the Antarctic Circumpolar Current and through atmospheric fresh-water fluxes to 
form a very complex'system. Stommel (1961), Rooth (1982), Welander (1986) and 
others, by using simple box models, and Kagan & Maslova (1990), by using a three- 
layer model, had arrived at  possible multiple equilibria for this system. 

These multiple equilibria have attracted a substantial amount of attention 
recently, being perceived as closely related to the glaciation cycles of the Quaternary 
era (Broecker, Peteet & Rind 1985; Duplessy & Shackleton 1985; Ghil, Mullhaupt & 
Pestiaux 1987; Duplessy et al. 1988; Shackleton et al. 1988) and to interdecadal 
oscillations of the ocean-atmosphere system (Manabe & Stouffer 1988; Ghil & 
Vautard 1991). Marotzke, Welander & Willebrand (1988) used a two-dimensional 
hydrostatic model to illustrate the asymmetric, bifurcated state in a rectangular box. 
Using oceanic parameters, they studied a problem of very high Rayleigh number. 
Their conclusions are similar to those found in the OGCM experiments. They have 
also proposed a positive feedback mechanism to explain the instability which we 
shall explore later, and concluded that there are no threshold values for multiple 
equilibria, i.e. as long as a salt-flux boundary condition is applied, one-cell circulation 
always prevails. 

Thual & MeWilliams (1992) have extensively studied the bifurcations in a two- 
dimensional box. They used a non-hydrostatic model and imposed arbitrary salinity- 
flux conditions, without solving the problem with restoring conditions for the 
temperature and salinity first as described above. Because of the latter feature, it is 
hard to determine the correspondence between salinity Rayleigh numbers and 
thermal Rayleigh numbers in their work, which makes it difficult to directly compare 
our results with theirs. 

In this paper, we investigate a similar problem by solving numerically the two- 
dimensional Navier-Stokes equations and the full transport equations for heat and 
salt by a finite-difference method (Quon 1976, 1987). We examine the bifurcation 
structure as a function of the Rayleigh number Ra and the salt-flux strength y ,  and 
show that there are thresholds for both R a  and y below which bifurcation does not 
take place. 

In $52 and 3, we present the model and the numerical methods. In $4 we report the 
results of our numerical computations. A stability curve based on the results of these 
numerical experiments is presented in $ 5.  Conclusions and suggestions for future 
work follow in $6. In Appendices A and B, we construct explicitly approximate two- 
dimensional symmetric solutions, for low and high Ra,  in order to help understand 
some of our numerical results. The stability curve in $5 is complemented by the 
bifurcation diagram in Appendix C. 

2. Themodel 
The model consists of a rectangular box of arbitrary height-to-length aspect ratio, 

d = H / L ,  as depicted in figure 1. In  the geophysical context, we can consider this 
model as a crude representation of the zonally averaged latitude-depth cross-section 
of a world ocean. Arguments for the exclusion of rotation are given by Marotzke 
et al. (1988) and by Thual & MeWilliams (1992). We approach this idealized problem 
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o = x  x (grid points) + x =  1 

FIQURE 1. (a) The physical model with T and S boundary conditions indicated and the expected 
symmetric solution. Contour interval for the stream function $(r, z )  is 9 x non-dimensional 
units. ( b )  Temperature (salinity) values imposed at the boundary and a typical salt-flux distribution 
along it computed from a symmetric steady state. 

in an exploratory fashion, covering a wide range of parameters, with the values 
relevant to planetary-scale flow representing a small subset of this range. 

We impose the restoring conditions at the bottom boundary instead of the top for 
convenience, because we already have a model that was thoroughly calibrated on a 
different thermal convection problem (Quon 1987). As a result, the fluid will sink 
near the vertical symmetry axis, rather than rising there, as in previous work with 
the restoring boundary conditions at  the top: the two sets of results are simply a 
reflection of each other in a horizontal symmetry axis. 

We introduce a Cartesian coordinate vector X = (x, z )  and a velocity vector V = 
(u, w), and use the following characteristic values to non-dimensionalize the 
equations : lengthscale L ,  L being the length of the box, velocity scale U = ( K ~  v) i /L,  
KT and v being respectively the thermal diffusivity and kinematic viscosity, timescale 
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7 = L / U ,  and temperature and salinity scales AT and AS,  which are respectively the 
maximum temperature and salinity differences in the enclosure. However, when the 
salt flux is specified, the maximum difference, AS, will be different from that when 
the restoring condition is specified on the boundary. From our computations, A 8  is 
of the same order of magnitude for both sets of conditions. 

The two-dimensional governing equations are 

au/at + au/ax + au/aZ = - ap/ax + UWU, (2.1) 

(2.2) 

(2.3) 

(2.4) 

div V = 0, (2.5) 

awlat + u aw/ax + w a w / a Z  = - ap/aZ + R a ( T  - AS) + UWW, 
aT/at + u aT/ax+ w aT/& = l/&V2T, 

asp + u as /ax  + was/aZ = &v2ss, 

with the following boundary conditions : 

V = O  a t z = d ,  

au/az = w = 0 at z = 0, 

u = aw/ax = 0 at x = 0, 1, 

aT/& = as/& = 0 at z = d ,x  = O , i ,  

( 2 . 6 ~ )  

(2.6b) 

( 2 . 6 ~ )  

(2.6d) 

where a/an denotes the normal gradients on the respective boundaries. A special role 
will be played by the temperature and salinity boundary conditions : 

(2.6e) T = T ( x )  = S ( x )  = i (cos2nx-  1 )  at z = 0, 

or T = T(x) ,  aS/az = y f ( x )  at z = 0. (2-6f  1 
Here f(x) is the salinity gradient (salt flux) calculated from the symmetric state 

using boundary condition (2.6e), y being a free parameter to be discussed later. Note 
that at  the sidewalls only free-slip conditions are imposed, in order to make the 
vertical boundaries of the model similar to the natural conditions in the ocean. 
Unfortunately, this will also make it more difficult to model the flow in the 
laboratory. We believe, however, that the free-slip sidewalls do not alter the basic 
dynamics of the problem. Note that (2.2) shows that T and S have directly opposite 
effects on the flow, accelerating or decelerating it according to the respective sign of 
their gradients. 

The main non-dimensional parameters are 

Ra = a g A T L 3 / ( ~ ,  v), the (thermal) Rayleigh number, ( 2 . 7 ~ )  

h = PAS/(aAT),  the salt-to-heat buoyancy ratio, (2.7 6 )  

the Lewis number (the ratio of salt and heat diffusivities), ( 2 . 7 ~ )  

and u = v/KT, the Prandtl number, (2.7d) 

based on the following equation of state 

17 = K S / K T ,  

p = p0( i -aTAT+/3SAS);  (2.7e) 

here K~ is the coefficient of diffusivity for the salinity, while a and /3 are the 
coefficients of volume expansion for heat and salt, respectively. Now if we include 
the parameter y ,  which is introduced in (2 .6 f )  to denote the salt-flux strength (the 
original salt flux has y = i),  we have the following parameter set for the problem: 

(2.8) = (Ra, Y, A, 7, u, 4. 
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For water, c = 0(10),  h = 0.32, 7 = O(10-2). The parameters listed in (2.8) form a 
complete set, according to Buckingham’s l7-theorem (Barenblatt 1979). 

The parameter set SZ is obviously too large for any systematic investigation to 
cover all of it. We shall show later that the essential parameters for bifurcation are 
the Rayleigh number, Ra, and the salt-flux strength, y.  

3. Numerical and computational aspects 
3.1. Numerical method 

Equations (2.1)-(2.7) have been solved by a finite-difference method using stretched 
coordinates (Quon 1976) that  already helped solve successfully a number of thermal 
convection problem in rotating and non-rotating frames of reference (Quon 1980, 
1983, 1987). We give therefore only an outline of the method here. 

The basic idea of the stretching is to  resolve the boundary layers near the walls, 
without an undue increase in computational burden. With the transformation x+ 
((x), x +  C ( z ) ,  (2.1)-(2.5) become 

au/at + v. d~ = - (aqax)  (ap/a[) + UQU, (3.1) 
awlat+ v. d~ = - (aC/az) (apiag) +RCI(T- AS) + &yW, (3.2) 

aT/at+ V - d T  = l / & 9 T ,  (3.3) 
aspt + v. d s  = y / v ~ ~ s ,  (3.4) 

d * V = O ,  (3.5) 
where d = (iag/ax) @/at) + (jafl/az) (a/aC) and 9 = d-d are the two-dimensional 
gradient and Laplace operators in the transformed coordinates, i and j being unit 
vectors in the x- and z-direction, respectively. A diagnostic equation for the dynamic 
pressure is obtained by operating on (3.1) with (aE/dx)(a/a[) and on (3.2) with 
(aC/:/az) @/a<), and adding the resulting equations : 

5?p = -a(&- v)/at+A?(U,W,T,S), (3.6) 
where 4(u ,w,T,S)  represents the rest of the terms in (3.1) and (3.2) after the 
operation. 

Equation (3.6) is elliptic with variable coefficients. The boundary conditions for 
(3.6) are obtained from (3.1) and (3.2). Since d* Von the right-hand side of (3.6) does 
not vanish in finite-difference form because of machine round-off errors, i t  is retained 
in the equation, and unknown at  future time levels. The best approximation is to 
assume d- V in the future to be zero (Quon 1976; see also Chorin 1968, 1969). 

The stretched coordinates are based on the following strictly-monotonic transform 
function : 

In [ ( b  + x-0.5)/(b - x + 0.5)] 
In [ ( b  + 0.5)/ ( b  - 0.5)] 

E ( x )  = 0.5(N+ 1)+0.5(A- 1 )  x (3.6a) ’ 

b2 = 0 .25 / (1 -2~) ,  0 < x < 1 ,  (3.66) 

where s is a stretching parameter and N is the number of grid points in the x- 
direction. For each value of x, there is a corresponding value for [, with 0 < x, 
5 < 1. The transformation for the vertical coordinate is obtained by replacing (x, 5) 
by (2, c) in the above equation. 

For the studies reported in this paper, the values of s are 0.45 in El and 0.04 in 5, 
when their respective ranges are 0 < 6 < 1 and 0 < C < 0.2. These values of s yield 
fairly uniform transformations throughout the whole range of x and x .  Highly 
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contracted grids, corresponding to very small values of s (relative to 1 .0 and d ) ,  have 
not been used because the flows are reasonably uniform over the whole domain of 
integration for the range of Rayleigh numbers we are interested in. An argument can 
be made for much higher grid resolution in the boundary regions for Ra = O( lo8). 
However, that would require many more grid points to provide reasonable resolution 
in the regions away from the boundary. This does not seem to be necessary for the 
problem we are interested in, as shown below. The computational meshes for which 
detailed results are reported consist of 60 x 30 grid points for d = 0.2, and 60 x 60 for 
d = 1.0. A number of experiments with different resolutions were carried out and 
their accuracy compared with that of the reported results. The comparison with 
higher resolutions shows that the meshes chosen give accurate results for all Ra- 
values studied. Choosing a fixed mesh for all Ra provides consistency, as well as 
computational simplicity. 

The discretization of the equations is on an Arakawa C-grid (Arakawa & Lamb 
1977 ; Quon 1976) by second-order, centred differences and the discrete equations are 
solved by the alternating direction implicit (ADI) method (Varga 1962). 

3.2. Computational procedure 
The computation of quasi-steady states proceeds by forward integration of the flow 
equations, in three steps. First, a quasi-steady state is established for a given Ra with 
the restoring boundary conditions for both temperature and salinity specified at  the 
bottom. The quasi-steady state of this first stage of the computation is always a 
symmetric two-cell circulation, with fluid rising near the sidewalls and sinking at  the 
centre. From the steady-state solution of the salinity equation, the salt flux across 
the bottom boundary is computed and stored. 

In the second stage of the computation, we use the same temperature restoring 
condition, but replace the boundary condition for the salinity with the flux computed 
from Stage 1 .  The computations are carried out with either (a) the previous 
symmetric state as initial data, or ( b )  a zero initial condition for all fields. After an 
arbitrary duration in this Stage 2, a perturbation of 0(0.1%) of the salinity 
maximum is introduced on the first grid line next to the bottom boundary in either 
half of the enclosure to start Stage 3 of the computation. 

Sometime during Stage 3 of the computation, the symmetric circulation gives way 
to a major and a minor cell. The time it takes for the major cell to develop depends 
on many factors, such as the initial data, the Rayleigh number Ra, the salt-flux 
strength y ,  and the aspect ratio d .  It seems that the system is inherently unstable. 
Even machine round-off errors are sufficient, over a broad parameter range, to 
trigger the instability. This assessment agrees with the observations of Weaver & 
Sarachik (1991), and of Marotzke et al. (1988), who introduced perturbations right a t  
the beginning of Stage 2 for most of their computations. However, our broader 
parameter sweep indicates that when y is small, or when d is large, we must introduce 
a perturbation in order to initiate the finite-amplitude instability within reasonable 
time. 

We have discovered that for Ra > Ra, (Ra, being a critical Rayleigh number), 
when bifurcation is expected, there exists a value of y < 1 below which bifurcation 
is suppressed. On the other hand, when Ra < Ra,, and bifurcation is not expected, 
there exists a value of y > 1 above which bifurcation does appear. For a given Ra, 
the major cells vary in size depending on the value of y. Similarly, for a given y ,  the 
size of the major cell depends on Ra. In the y-Ra space, we can construct a neutral 
stability curve separating symmetric from asymmetric flows. Next to this curve in 
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the asymmetric regime, the cells are almost equal in size. The asymmetry intensifies 
as one moves away from the stability curve. We shall discuss this curve in $5  below. 

4. Results 
As discussed above, temperature and salinity effects tend to counteract each other. 

There are, therefore, two realizable symmetric states. The flow is either dominated 
by the salinity field, if h > 1,  or by the temperature field, if A < 1 in (2 .2 ) .  When the 
Rayleigh number is sufficiently small, we see in Appendix A that $(x , z ,A )  = 
-$(x,z,A')  if A' = 2-A, cf. (A 15). The directions of the two flows are opposite to 
each other, but the functional shapes of the fields are exactly the same. The reason is 
as follows. If we replace A by ( 2 - A )  in (2.2), the term Ra(T-AS) becomes 
R a ( T - 2 S +  AS) = -Ra(T- AS) if T = S.  This holds for the Lewis number 7 = 1, 
which is used for almost all the computations reported in this paper, except where 
stated otherwise. 

For large Rayleigh number, at  which the heat and salt transports are dominated 
by convection, the flow directions of the two symmetric cells are also opposite to each 
other, as in the case of small Rayleigh numbers. The functional shapes of the fields, 
however, are no longer similar, because of the boundary-layer flows being different. 

We investigate the salinity- and temperature-dominated regimes separately, and 
concentrate on temperature-dominated flows with h = 0 .32 ,  the value for water. 
Only one case study - at high Rayleigh number - in the salinity-dominated regime 
is presented here, since oceanic flows at  present, at least, are in the temperature- 
dominated regime, with plumes at high latitudes rather than near the equator (see, 
however, Kennett & Stott 1990, 1991, for possible past ocean circulations with 
substantial warm saline deep water formed at low latitudes). The low Rayleigh 
number flows in the former regime can be inferred from those in the latter regime, 
studied in $4.2. In  order to maintain continuity in the discussion of the temperature- 
dominated regime, we present the salinity-dominated flows first (which might also be 
the correct geological sequence of events). 

Before proceeding with the study of the flows in a two-component fluid, we 
consider the question whether or not a one-component fluid can lead to an 
asymmetric circulation. We have performed an experiment with temperature forcing 
only, at  Ra = 5 x los. After the flow had reached a quasi-steady state, its heat flux 
was used as the bottom boundary condition. The flow remains symmetric (not 
shown). Multiplicity of equilibria and symmetry breaking, a t  least in a two- 
dimensional situation, seem to be associated only with the two-component fluids that 
are our main concern here. 

4.1. Salinity-dominated regime 
In this subsection we describe a solution with A = 2 - 0 . 3 2  = 1.68, Ra = lo8, d = 
0.20, which will be compared with the equivalent case in the temperature-dominated 
regime having A = 0 .32 ,  as shown in figures 6 and 8 below. 

4.1.1. Symmetric flows 
Figure 2 shows the salinity, S, and the stream function, $, of the symmetric flow. 

In  the symmetric regime, when the same restoring boundary condition is applied to 
both the temperature and salinity equations, the salinity distribution is exactly the 
same as that of the temperature for 7 = 1. Therefore we display only the temperature 
or the salinity of the symmetric flows. 
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FIGURE 3. An asymmetric state of the salinity-dominated case, h = 1.68; salt-flux condition. (a )  
Temperature, ( b )  salinity, and (c) stream function at timestep 160 k ;  (d) temperature, ( e )  salinity, 
and (f) stream function at timestep 300 k .  Contour intervals are 0.06 for temperature and salinity; 
they are 3.00 for the stream function in (c) and 1.0 in (f), respectively. 

Transition to a one-cell circulation is tantamount to a symmetry-breaking 
bifurcation. The salinity- and temperature-dominated regimes after bifurcation no 
longer display such a simple correspondence between the one and the other as in the 
symmetric case. 

4.1.2. Asymmetric jlows 
Figure 3 (a-f) shows the asymmetric states of temperature, salinity and stream 

function a t  two widely separated timesteps, (a-c) a t  timestep 160 k, and (d- f )  a t  
timestep 300 k, where 1 k = 1000 steps. After the flux condition has been applied a t  
the bottom boundary, the flow seems to be remarkably stable. The small asymmetries 
in figures 3 (a)-3 ( c )  develop very slowly, and do not show the explosive growth seen 
for the temperature-dominated regime (cf. figure 12). The present salinity-dominated 
case takes more than 110 k timesteps for the cells to show even minute asymmetry. 
On the other hand, the temperature-dominated case shown in figure 6 takes only 20 k 
timesteps to reach a noticeably asymmetric state from a symmetric one, and the 
explosive growth from this slightly asymmetric state to a. completely new one-cell 
circulation takes less than 5000 timesteps. The dimensionless time step, 6t = 4 x lop6, 
is exactly the same in both cases. 

At 160 k, wavy motion is apparent in the left-hand cell, while the right-hand cell 
appears quite smooth (figure 3c).  Corresponding to this wavy motion, both the 
temperature and salinity plots exhibit some detached or nearly detached cont,ours 
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(figure 3a, b ) ,  indicating some fairly vigorous flow. The left-hand cell is not preferred 
for wavy motions to appear. At other times, it is the right-hand cell that is wavy, 
while the left-hand cell remains smooth. The two types of motion alternate quasi- 
periodically between the cells for some time. Subsequently the cells split into four as 
shown in figure 3(d-f) ,  and further into a maximum of six cells (not shown). 
Although the cells are never completely symmetric about the centreline of the cavity, 
there is always an equal number of similar cells in each half of the cavity. The 
circulation reverts to four and two cells again from a configuration of six cells. The 
computations were not carried out long enough to see many of these reversals. 
However, a t  no time does one cell dominate the others-as will occur in the 
temperature-dominated case (see figure 8) - while the turbulence-like structure of 
the isotherms and isohalines seen here never appears in the temperature-dominated 
cases studied below. The circulation for the salinity-dominated flows with a salt flux 
condition is in fact very similar to BBnard convection. 

We have not been able to obtain a quasi-steady state in this case, but symmetry 
breaking appears to be definitely more difficult here than in the corresponding 
temperature-dominated case. We can certainly not obtain a one-cell circulation for 
the former case. It is clear that although the symmetric states are very similar in 
both the temperature- and salinity-dominated regimes, the asymmetric states are 
not. The differences may be due to the fact that, in the temperature-dominated case, 
the unstable layers are widely separated from each other, while in the salinity- 
dominated case the unstable layers are adjacent to each other forming an internal 
layer. In the latter case, the strongest circulations are back to back. Close proximity 
of the rapid flow regions in the interior seems to make it more difficult for one cell 
to annihilate the other, and hence the system appears to be a great deal more stable 
than in the temperature-dominated case. One more important difference between the 
salinity- and temperature-dominated cases is that we have applied the flux condition 
on the dominant component, S, instead of the dominated component, T (in 
contradistinction from the temperature-dominated cases studied below, where the 
flux condition is applied to the dominated component). 

It follows that the two regimes behave quite differently in our model if we 
maintain the functional forms of the boundary conditions for T and S the same, but 
vary their amplitudes to effect either a temperature- or salinity-dominance. Thual & 
McWilliams (1992) indicate that their model could yield asymmetric results for the 
salinity-dominated flows. It is not clear how severe the asymmetry is and where 
asymmetry can be realized in the salinity-thermal Rayleigh number space. In 
addition, they used a much smaller aspect ratio, d = 0(0.05), instead of the value 
d = 0.20 used here. 

4.2. Temperature-dominated regime 
We concentrate on this regime, since it is more realistic in terms of the ocean 
circulation for the present and recent geological past : for the last 25 million years or 
more (Kennett & Stott 1990), deep waters have formed in plumes in polar seas, 
rather than in the vicinity of the equator. 

4.2.1. Symmetric flows 
When we apply the restoring T and S boundary conditions at the bottom, the 

quasi-steady states are symmetric about the vertical centreline for both the tem- 
perature- and salinity-dominated cases. The circulations consist of two cells, each 
filling up half of the cavity regardless of the values of the Rayleigh number Ra and 
aspect ratio d. The T and S distributions, however, show great differences a t  
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FIGURE 4. Symmetric flows at low Ra = lo3. (a )  The temperature, and ( b )  the stream function for 
d = 0.2; (c) temperature, and (d )  stream function for d = 1.0. Contour intervals are 0.06 for 
temperature, 9 x for @ in ( b )  and lo-* in (d )  ; @-values are scaled by the respective multipliers. 

different Rayleigh numbers in accordance with their respective boundary-layer 
thicknesses. 

( i )  Low hnd intermediate Rayleigh number $ow, Ra = lo3 and Ra = 5 x lo6 
In this subsection, we investigate the steady symmetric states a t  Ra = lo3 and 

Ra = 5 x 106 with aspect ratios d = 0.20 and 1.0. The former belongs to the 
low-Rayleigh-number regime. While Ra = 5 x lo6 would normally be considered to 
belong to the high-Rayleigh-number regime in thermal convection problems (Quon 
1972), we consider it as intermediate here because we shall include much higher 
Rayleigh numbers, up to Ra = 2 x los. 

At low Rayleigh number, Ra = lo3, the T and S transports are dominated by 
conduction. Consequently the isotherms and isohalines diffuse over the whole cavity 
(figure 4 a )  at low aspect ratio. The vorticity fields are solutions of the Poisson 
equation (A 2) with the horizontal gradients of T and S as the source of diffusion. The 
streamlines are almost evenly distributed, with no distinct boundary layers (figure 
4 b ) .  When the aspect ratio increases from 0.20 to 1 .O, the former being used for most 
of the computations discussed here, the solutions remain qualitatively very similar. 
Figures 4(c) and 4(d) show T and @ for aspect ratio unity. Note that T+-i at  
z = 1 (figure 4c) ,  which is also predicted by (A 7 ) .  If we compare the magnitudes of 
the stream functions in figures 4(b) and 4(d), they are 10 times larger in the latter. 
This is predicted by (A 16) because of the difference in the aspect ratios of the two 
cases. In fact, these solutions a t  low Rayleigh number are well approximated by the 
corresponding analytical solutions given in Appendix A. 
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FIGURE 5.  Symmetric flows at intermediate Ra = 5 x los. (a) The temperature, (b)  the stream 
function for d = 0.2; (c) temperature, and (d) stream function for d = 1.0. Contour intervals are 
0.06 for temperature and 0.90 for @ in (a) and 1.0 in (d).  

At intermediate Rayleigh number, Ra = 5 x lo6, the boundary layers along the 
bottom and the side boundaries have become more distinct, as shown in figure 5. 
Along the top boundary, the flow is very weak. By comparing figures 4 and 5, the 
differences between low- and intermediate-Rayleigh-number flows are most obvious 
in the distribution of isotherms (and isohalines). Figures 5 ( a )  and 5(c) show that the 
isotherms are more concentrated near the bottom of the cavity for both d = 0.2 and 
1.0. In spite of the smaller area most of the isotherms occupy, the streamlines still 
fill the whole interior of the fluid, as in the flows at low Rayleigh number. This is a 
particularly striking feature when we compare figure 5(d) to 5(c) for d = 1.0. Note 
that, in the interior, the streamlines are almost vertical and the stream function 
can be well approximated as a linear function of z. 

Of course the flows for intermediate Rayleigh numbers are no longer well 
represented by the analytical solution for low Ra in Appendix A. One is tempted 
to invoke the arguments presented in Appendix B for high Ra to explain the 
interior flows for this particular case. At sufficiently high Rayleigh number, the 
interior stream function assumes the functional form $(z, z,,) = T,,/T,(x-#. Hence 
$ = -a(.-+) = $(z) if T = Ae-az. Furthermore, $ = 0 if T is linear in z. It 
is interesting that the larger the decay constant a, the larger 9, provided T(z) is 
truly exponential. This is no paradox here because the isotherms are compressed by 
a larger downward velocity when a is large. Unlike the situation at low Rayleigh 
numbers when the interior flows are generated by thermal forcing in the interior, at 
high Ra they are forced in the boundary layers. Therefore, in order to understand the 
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FIGURE 6. Symmetric flo\vs at high Ra = lo8. ( a )  The temperature, and ( b )  the stream function for 
d = 0.2; (c) tempernture. and ( d )  stream function for d = 1.0. Contour intervals are 0.06 for 
temperature and 2.00 for $. 

dynamics of the heat and salt transport in the high-Ra regime, we must properly 
resolve the boundary-layer problem. If T is linear, it is most likely governed by 
diffusion. This implies that the interior velocity is small or zero, and is not important 
in the heat transport process. We shall examine the interior temperature distribution 
closely in the next subsection. 

(ii) High Rayleigh number flow, Ra = lo8 
Boundary-layer flows are much more pronounced for Ra = lo8 than those for the 

lower Rayleigh numbers. There are boundary layers next to the vertical sidewalls 
and above the bottom, although there is no visible boundary layer below the top 
boundary. As in the salinity-dominated case, the vertical plumes, or vertical 
boundary layers, start from areas where the fluid is gravitationally unstable, as 
shown in figure 6 ( a ,  b ) ;  for the present case these regions are near the vertical 
boundaries. Strong advection in the sidewall boundary layers carries T and S 
filaments along these walls away from the bottom. Weaker, more diffuse advection 
due to the return flows in the interior of the cavity compresses the isotherms and 
isohalines, and confines them to the bottom. Consequently, a t  high Rayleigh number 
the isolines of both T and S adhere to the bottom, forming the bottom boundary 
layer. This is true at both d = 0.20 (figure 6 a )  and d = 1.0 (figure 6c). At d = 0.20, 
there is no real interior, as the entire circulation is within the boundary layer. In  
comparison with the flows at intermediate Rayleigh number (figure 5 b ) ,  the 
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streamlines extend to a greater height in the sidewall boundary layers. Note 
especially that the cells are almost identical to those in the salinity-dominated case 
shown in figure 2 (b), except that the left- and right-hand cells have interchanged 
positions, as discussed in $4.1.1. 

A t  d = 1 .O, the stream function contours for Ra = lo8 are very different from those 
shown in figure 5d for Ra = 5 x lo8. The most significant contrast between the two 
flow patterns is that, at  Ra = lo8, the streamlines in the interior are not vertical 
straight lines, indicating nonlinear effects. They are, however, still evenly spaced in 
the horizontal, and can be well approximated by a linear function of x, as they were 
for Ra = 5 x lo8. The dynamics of the system at both Rayleigh numbers are very 
much controlled by the boundary layers, although at  the higher Rayleigh number 
advection of momentum in the interior has become important. Hence the infinite 
Prandtl number argument presented in Appendix B is no longer valid. Note that in 
figure 6(d) the stream function maximum is almost twice that shown in figure 5 ( d )  
(16 DS. 9.3). The flows in general, and the boundary-layer flows in particular are much 
stronger for Ra = lo8. 

The boundary-layer thicknesses are inversely proportional to the Rayleigh 
number raised to an appropriate fractional power (see figures 5(c)  and 6 ( c )  and the 
quantitative estimate below). Figure 6 (c) shows that the isotherms (and hence 
isohalines) are confined to the bottom boundary region as in figure 5 ( c ) .  The absence 
of isotherm plumes next to the two side boundaries may indicate that the grid 
spacing is perhaps not fine enough to completely resolve the boundary-layer 
structure for this particular computation. The qualitative structure of the flows 
seems to be reasonably well defined. 

Since the interior temperature (and salinity) is constant, the flow adjustment is 
through viscous diffusion wherever advection of momentum is negligible (see 
Appendix B). The time required by the flows to reach equilibrium in the interior is 
extremely long. Both cases for d = 1 have been run for an even longer time than the 
others to ensure their steadiness. 

In  figures 7 ( a )  and 7 ( b )  the temperature is plotted as a function of z for Ra = 
5 x lo6 and for Ra = lo8: at the centre of the container (panel a) and near the sidewall 
(panel b). For both Rayleigh numbers, the interior temperature is almost constant ; 
near the centre (figure 7 a )  it is in fact of the form T(z) = T,-(T,+l) e-a*, with 
T,  = -0.24 for Ra = 5 x lo8 and T, = -0.27 for Ra = lo8. Near the sidewalls (figure 
7 b )  the z-dependence of temperature is not monotone, and hence not exponential (see 
also figures 5(a)  and 6(a)),  but it still asymptotes to a (different) constant as the 
interior is reached. 

The temperature inversion near the bottom for both Ra-values (figure 7 b )  is 
associated with gravitational instability and vigorous motion (figure 7 c ) .  If we take 
the vertical positions of the peaks of the inversions as a measure of the bottom 
boundary-layer thicknesses, the ratio of the two is given by Q = &which is very close 

In figure 7 (c) horizontal velocity u appears as a function of z, at x = 0.25, starting 
from the bottom boundary, and in figure 7 (d) vertical velocity w as a function of x, 
at  z = 0.25, starting from the left-hand sidewall. If we scale the vertical distance from 
x = 0 in the horizontal bottom boundary layer as p = z / R d  and the horizontal 
distance from x = 0 in the vertical boundary layer as u = x/Ra-i, we find that the 
maxima of u are atp = 3.91 and 3.63 (figure 7c) ,  and the zero crossings of w at u = 7.93 
and 5.01 (figure 7 4 ,  for the two Ra-values, respectively. The fact that the u-maxima 
in the bottom boundary layer are so close to each other in the p-coordinate indicates 

to (10*/5 x 106); = A. 
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FIQURE 7. Temperature and velocity profiles a t  d = 1.0, for Ra = 5 x lo6 and Ra = lo8. (a) 
Temperature as a function of z a t  the centre of the container z = + (  = $L in figure la) ;  ( b )  
temperature as a function of z a t  z = 0.06 (the 5th grid point from the left-hand wall) ; note the two 
different temperature scales for the two different Ra-values in panel ( b ) .  ( c )  Horizontal velocity u 
as a function of z in the bottom boundary layer a t  x = 0.25; ( d )  vertical velocity, w, as a function 
of z in the vertical boundary layer a t  z = 0.25; note the different velocity scales for different Ra in 
both panels ( c )  and ( d ) .  
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that the scaling argument presented in Appendix B describes the bottom boundary 
layer rather well, and that the grid resolution is also adequate in this region. 
However, the zero crossings of the vertical velocities in the vertical boundary layer 
should be closer together. This implies that the higher Rayleigh number computation 
may benefit from more grid points in the proximity of the vertical boundaries. 

To conclude the discussion of symmetric flows, we must point out that when 
restoring boundary conditions for both T and S are applied, the symmetric 
circulations are stable even for extremely long computations. The accumulated 
truncation errors may degrade the accuracy, but do not alter the symmetry. We can 
argue therefore on firm grounds that the asymmetric flows due to salt-flux conditions 
discussed below must be physical, and not numerical, phenomena. 

4.2.2. Asymmetric flows 
Contrary to the results of most of the previous investigators, which were more 

narrowly guided by the oceanographic application and consequently had very high 
Rayleigh numbers and low aspect ratios, we have found that transition from 
symmetric to asymmetric states is not inevitable. When it  happens, the asymmetry 



FIGURE 8. Stream function fields for asymmetric states. From (a )  to (d )  the Rayleigh numbers are 
4 x lo5, loo, lo', lo8; note how the dominant cell increases with Ra. Contour intervals are 0.20,0.20, 
0.80 and 1.00 from (a) to (d) respectively. 

can range from very slight, i.e. the cells being slightly different in size, to 
catastrophic; in the latter case, one cell completely annihilates the other. There are 
two separate routes to symmetry breaking. ( a )  It can be reached by varying the 
Rayleigh number ; for all other parameters in SZ fixed, there exists a critical Rayleigh 
number a t  which bifurcation occurs, Ra,. ( b )  With the Rayleigh number and all other 
parameters in SZ fixed, bifurcation can be attained by varying the salt-flux strength 
y.  When y is equal to unity, the problem is the traditional one that encompasses all 
previous works cited above. 

We have found that for a given Rayleigh number, Ra > Ra,, there exists a critical 
y < 1 below which the symmetric flow is stable. On the other hand, for a given 
Rayleigh number R a  < Ra,, there exists a critical y > 1 at which bifurcation will 
occur. In  other words, for a large range of Ra encompassing a few decades, 
bifurcation always occurs. We have not been able to determine, because of 
computational difficulties, extreme values for Ra or y beyond which bifurcation with 
respect to the other parameter is completely inhibited. We now examine the 
asymmetric flows as a function of Rayleigh number at fixed y ,  as well as a function 
of salt-flux strength at  fixed Ra. 

(i) Rayleigh number variation, y = 1 

Once we have realized that the system switches symmetry for a certain Rayleigh 
number, it  is natural to ask whether there is a threshold value for Ra below which 
the symmetric flow is stable for mixed boundary conditions. Equally interesting is 
the question whether or not the flows will reach the same final, one-cell state for all 
Rayleigh numbers for which asymmetric flows are possible. We have fixed y = 1 as a 
starting point because that is the situation investigated previously by other authors. 

For y = 1.0 and d = 0.2, the critical Rayleigh number is slightly above 3 x lo5. 
Below that, symmetric flows persist for combined restoring and flux conditions. In  
figure 8, we show the asymmetric quasi-steady states reached when the salt-flux 
condition is applied. The range of Rayleigh numbers is 3 orders of magnitude, from 
4 x lo5 to 1 x lo8. Note that for all these diagrams, the perturbations applied in Stage 
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2 of the computation (see $3.2) are on the left, where the dominant cell is located. 
Applying the perturbation in the right-hand half of the cavity stimulates the growth 
of the opposite cell (see figure 13). 

As the Rayleigh number increases from 4 x lo5 to 1 x lo', the dominant cell grows 
with it. As the minor cell occupies a correspondingly smaller and smaller portion of 
the cavity, i t  also shrinks a t  the top. This is particularly evident for Ra = lo6, where 
the minor cell is nearly triangular. A t  Ra = lo' and lo', the minor cell is almost 
completely annihilated. The remnants of the minor cell occupy the lower right-hand 
corner, indicating that the tongue-like intrusion of the major cell is stronger a t  the 
top edge. It follows from this figure that the asymmetric states are not always one- 
cell circulations, while Marotzke et al.'s (1988) results and other experiments with 
OGCMs showed only an extreme, one-cell state. 

The asymmetric states change gradually from a two-cell circulation at Rayleigh 
number 4 x  lo5 to a one-cell circulation at 10'. Note also that,  as the Rayleigh 
number increases, the sidewall boundary-layer thickness decreases approximately as 
R a t  (see Appendix B and figure 7 4 .  Since the transition from a symmetric to an 
asymmetric state is very gradual, it is difficult to determine the critical Rayleigh 
number, Ra,, accurately through numerical computation. At Ra = 3 x lo5, sym- 
metric cells are quite stable, while at 4 x lo5, asymmetric flows set in very fast after 
the perturbation is added. 

(ii) Variation of the salt-flux strength, Ra = 5 x lo6 
Keeping the Rayleigh number constant, one can vary the strength of the salt-flux 

y on the boundary, or the buoyancy ratio A, to achieve bifurcation. Indeed, using 
aS/az = yf(z) is practically the same as changing S to yS in equation (2.2), while the 
other boundary conditions for S are homogeneous. We have done experiments (not 
shown) to confirm this qualitative equivalence. Computationally, it is more 
convenient to vary y than A :  when using y ,  we only need to compute one salt flux 
for each Rayleigh number, and can perturb the same symmetric state for all y. Of 
course, this procedure tacitly assumes that the final state does not depend on the 
initial one. We have done experiments to confirm this, including the use of a 
drastically different initial state, that of zero fields. The end results are identical, 
except that it takes a somewhat shorter time to reach the final asymmetric state 
when the non-zero symmetric state is used as initial data. We can also consider y as 
a free parameter with no need to relate it to A ;  this is in fact what Thual & 
MeWilliams (1992) have done in their study. 

Figure 9 shows the quasi-steady asymmetric circulation for Ra = 5 x lo6 and three 
values of y :  0.40,0.50 and 0.55. The bifurcation point is near y = 0.40. Note that the 
asymmetry increases with y. The variations are in fact very similar to those that we 
have seen in figures 8(a)-8(d) ,  for different Rayleigh numbers when y is fixed. 
Therefore we conclude that each bifurcation point in the y-Ra space can be reached 
by varying Ra, y ,  or both. In fact we can define a neutral stability curve by using the 
results of a number of numerical experiments. We discuss this stability curve in $5 ,  
after we have studied other relevant parametric variations in the remainder of this 
section. 

(iii) Effects of unit aspect ratio, Ra = 5 x loe 
It is well known that, as the aspect ratio of the container of a fluid system 

increases, non-hydrostatic effects become more prominent, and the vertical advection 
becomes more important. I n  the case of thermal convection in a rotating fluid which 
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FIGURE 9. Asymmetric stream function fields for Ra = 5 x lo6 and increasing y-values : (a)  y = 0.40, 
( b )  y = 0.50, and (c) y = 0.55; note how the dominant cell increases with y. Contour intervals are 
1.00, 0.90 and 0.70 from (a)  to (c) respectively. 

is differentially heated from below, aspect ratio O( 1) permits many transient vertical 
modes (Quon 1987) ; we have also found them in our system. Without entering into 
a detailed study of the effect of aspect ratio on the generation of asymmetric flows 
in the present problem, we simply show that bifurcation from symmetric to 
asymmetric flows is not limited to small aspect ratios, as presented in earlier studies. 
Specifically we consider flows in a container of aspect ratio equal to unity at Ra = 
5 x lo8. The temperature (or salinity) and stream function of the symmetric flow for 
this case were shown in figures 5 ( c )  and 5 ( d ) ,  and discussed in $4.2.1 (i). 

Figure 10 shows T, S, and $ for the corresponding asymmetric state. The 
temperature and salinity contours (figure 10a, b )  show typical effects of asymmetric 
advection. Unlike the symmetric states whose temperature and salinity contours 
are identical, the T (panel a) and S (panel b) distribution of the asymmetric states are 
different because of their different boundary conditions. On the other hand, they 
are very similar to those for lower aspect ratios at  comparable Rayleigh numbers. 
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FIGURE 10. The asymmetric state for d = 1.0 and Ra = 5 x lo6. (a) Temperature, (a) salinity, and 
(c) stream function. Contour intervals are 0.06 for temperature, 0.10 for salinity and 0.90 for $ 
respectively. 

It is interesting to compare figure lO(c) with figure 5(d). It is obvious that for 
aspect ratio d = 1 ,  the asymmetric cell has the same vertical scale as its symmetric 
counterparts. The single cell fills the whole cavity (figure 10c) as it does for d = 0.2, 
despite the fact that the temperature and salinity contours are confined to the 
bottom boundary layer (figures lOa, b).  The interior T- and S-gradients are indeed 
close to zero and provide therefore no interior forcing. As pointed out in Appendix 
B, at high Rayleigh numbers the interior flows are not generated locally, but are 
forced by boundary-layer entrainment or detrainment. 

(iv) Efects of diflusivity ratio, 7, and Prandtl number, cr 
For water, the Prandtl number is cr = 7.1, while cr = 2.25 was used in our 

computations so far. While large variations in cr for purely thermal convection can 
lead to very substantial changes in the route to turbulence (Krishnamurti 1973; 
Busse 1978), the first one or two bifurcations may be rather insensitive to small 
changes in Prandtl number. Gill (1966) had even suggested that CT = 7.1 can be 
considered as infinite for thermal convection in an enclosure differentially heated on 
the sidewalls. Our experiments (not shown) confirm that there is little difference 
between Prandtl number 7.1 and 2.25 in thermosolutal convection. Thual & 
MeWilliams (1992) deleted the advection terms in the vorticity equation entirely, 
which is equivalent to setting cr+ co explicitly (see Appendix B.l here). We have 
used a smaller cr mainly for computational convenience. 

The correct diffusivity ratio for salt and heat, 7, is equal to lop2, i.e. heat diffuses 
100 times faster than salt. For phenomena which crucially depend on the difference 
in diffusivity, for example the so-called doubly-diffusive problem of salt fingering 
(Turner 1973), it  is important to use the correct ratio. Setting 7 = 1, on the other 
hand, eliminates certain computational difficulties associated with very small 
diffusivity, such as having to use extremely small timesteps. A mismatch in 
diffusivities of different components also delays the equilibration process un- 
necessarily when one is interested only in steady states. The crux of the argument for 
using a different Prandtl number and a different diffusivity ratio than those of water 
is that they are of secondary importance in the phenomena we are interested in. In 
spite of the different values chosen for these parameters in different computations, 
bifurcation from symmetric to asymmetric flows does occur. It is interesting, 
however, to see how a reduction in 7 affects the results, especially the asymmetric 
state. 
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FIQWRE 11. The symmetric and asymmetric states of the case with Lewis number 7 = 0.1 and 
Ra = lo6. (a )  Temperature, ( b )  salinity, and (c) the stream function of the symmetric state. (d )  
Temperature, (e) salinity, and (f) the stream function of the asymmetric state. Note the differences 
between the temperature and salinity distributions, in both the symmetric and asymmetric case. 
Contour intervals are 0.06 for temperature and salinity in ( b ) ,  0.10 for salinity in (e), 0.40 for $ in 
(c) and 0.20 in (f). 

In this subsection, we discuss the results of a computation for 7 = 0.10, i.e. the salt 
diffusivity has been reduced by an order of magnitude from that in the computations 
discussed above. Yet 7 is still an order of magnitude larger than the real value. Figure 
11 (a-c) shows the symmetric and figure 11 (d-f) the asymmetric state of T, S, and @ 
at Ra = lo6. The most conspicuous differences between this and the other cases 
studied in previous subsections appear in the solution of the salt equation. Of course, 
if 7 = 1, the mathematical solutions for both the temperature and the salinity are 
exactly the same. 

In the present symmetric state, however, the isohalines are very much more 
squeezed in the middle when compared with the temperature distribution. In  the 
asymmetric state, the isohalines are packed more densely on the left-hand side of 
the cavity than the isotherms, reflecting the less effective diffusive process. The 
asymmetric stream function seems to have been influenced by this anomaly. The 
outer streamlines at the left-hand side of the cell, near the bottom, recurve upward, 
following the salinity contours. This flow pattern resembles better figure 8 ( d ) ,  for 
Ra = los, than figure 8(b ) ,  for Ra = los, at 7 = 1 ;  it is also slightly more realistic 
than the latter when compared with present-day isopycnals in the Atlantic Ocean 
(Fuglister 1960; Defant 1961). Thus the effect of Lewis number is qualitatively 
secondary - bifurcation from symmetric to asymmetric flows still occurs - but 
quantitatively significant for the resulting asymmetric flow patterns. 
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104 x d t  - 104 x st - 
FIGURE 12. Time evolution of the flow for Ra = lo*, d = 0.2: (a) u-velocity at one point near the 
lower left-hand corner of the cavity, and (b) the integrated kinetic energy. The perturbation is 
applied at timestep 27 k. The abscissa is in lo4 timesteps. 

4.2.3. Time evolution near a bifurcation 
It is interesting to follow the transition from a symmetric to an asymmetric state 

in time, especially through the growth period. Explosive exponential growth marks 
most of the instabilities that we have described so far. Let us consider the case with 
Ra = lo* and y = 1.0. 

Figure 12 ( a )  shows the u-velocity a t  a point near the lower left-hand corner, and 
figure 12(b) the integrated kinetic energy as a function of time. After the initial 
growth, the system attains a state of quasi-equilibrium. Even after the switch from 
restoring to flux condition in S at timestep 23 k, and after the perturbation at  
timestep 27 k the kinetic energy maintains its equilibrium value for a long time (till 
about timestep 37 k)  before the exponential growth sets in. The growth period is 
about 4000 timesteps. This case shows an overshoot in the velocity (figure 12a). The 
corresponding integrated kinetic energy also shows a very definite disturbance at the 
same time, although it is smaller in amplitude. 

Figure 13(a-h) shows a selected number of contour plots of the stream function 
and salinity over the growth period. They correspond to 36, 39, 42, and 54 k 
timesteps, which cover the exponential growth period as shown in figure 12.  At 54 k 
timesteps the one-cell circulation has almost reached its equilibrium. These successive 
snapshots give a clear image of how the right-hand cell gains strength over the left- 
hand cell and eventually annihilates it. The time at which the  u-velocity attains its 
maximum a t  the overshoot corresponds to the time when the left-hand side cell is 
squeezed into the smallest area (figure 13c), before it finally collapses and gets 
annihilated. For lower Rayleigh numbers the growth process is smooth, and in 
general there is no overshoot. The process illustrated in figure 13 is fairly 
representative of the higher-Rayleigh-number bifurcation, but it is not universal. 

Note that this case has the exact same parameters as in figure 8 (d ) .  The cell centre 
(figure 13d) is on the right-hand side because the perturbation was introduced 
intentionally in the opposite side of the cavity, to show that the dominant cell can 
grow on either side. It should also be pointed out that figure 13(d) has not yet 
reached equilibrium. 
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FIGURE 13. The time evolution of the stream function and salinity over the growth period shown 
in figure 12. ( a d )  The stream function at time steps 36, 39, 42 and 54 k; (e-h) the salinity a t  the 
corresponding timesteps. Contour intervals are 2.00 for $ and 0.06 for salinity in (e) and (f), 0.07 
in (9)  and 0.10 in (h). 

5. Neutral stability curve and physical bifurcation mechanism 
We have shown that at different values of y and Ra, the symmetric state can 

bifurcate into one of two asymmetric states. We shall now summarize the results 
in a y-Ra regime diagram for this bifurcation. As we have indicated earlier in the 
paper, because of the large number of free parameters, we are not able to explore the 
neutral stability surface in the complete multi-dimensional parameter space SZ of 
(2.8). The curve presented in figure 14 is for 7 = 1, c7 = 2.25, h = 0.32, and d = 0.2. 

This curve is defined by a number of discrete points over 3 decades of Rayleigh 
number, and for y < 1.4. There appear to be two orthogonal asymptotes that this 
curve may approach, respectively at  y x 0.3 and Ra x los. At the high-Ra end of the 
curve, the requirements for grid resolution and computational timestep are very 
stringent in order to maintain computational stability and to attain acceptable 
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FIGURE 14. The stability curve in the y-Ra plane. The solid symbols represent asymmetric states 
and the open symbols symmetric ones. The circles are for d = 0.2 and the few squares are for d = 
1.0. All cases are for 7 = 1, r~ = 2.25 and A = 0.32. 

numerical accuracy. We have not been able to determine the position of the curve 
above Ra = 5 x lo6 as accurately as below i t ;  more refined computations would 
sharpen and extend our results in this part of the regime diagram. 

In figure 14, we have also incorporated a few points for aspect ratio unity. Most 
of these points indicate, not surprisingly, asymmetric flows. Indeed, if we use the 
vertical dimension of the container to define the Rayleigh number, and if we 
conceptually accept that - at higher Rayleigh numbers - smaller values of y are 
required for bifurcation, then the curve for d = 1.0 would shift to the left of the curve 
for d = 0.2. Consequently, most of the points for d = 1 .O presented here would fall on 
the asymmetric side of the curve as shown; we have not completely traced the 
appropriate curve for d = 1.0, which seems of lesser geophysical interest. 

In order to understand, at least qualitatively, the broad implication of the 
stability curve, we retrace the physical arguments some previous workers have used 
to explain the instability of the symmetric circulation. Following Marotzke et al. 
(1988), we start with a symmetric basic state. Let us assume that a parcel of fluid 
near the bottom, with a given heat and salt content, is perturbed, and that this 
perturbation will increase the parcel's buoyancy. Consequently the parcel will rise, 
and other fluid parcels will move in to replace it. When the restoring boundary 
condition is used, the fixed boundary value of salt at the bottom will be able to 
maintain the ambient salinity constant. When the parcels return to their original 
positions, they will be ' restored ' to the ambient salinity. Hence the perturbed parcels 
will be stabilized. 

However, if the salt-flux condition is applied while the symmetric state is 
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FIGURE 15. 

m 16 

- 12 40 r 

10 20 30 40 50 60 
= x (grid points) - x = l  

The salt flux across the bottom boundary computed from the symmetric 
Ru = 5 x los and Ru = lo8; d = 0.2. Note the shift in vertical scales. 

solutions for 

perturbed, the sequence of events can be very different. First, let us assume the per- 
turbed parcels are situated near the lower right-hand corner, and neglect the diffusive 
loss or gain of buoyancy in their paths. Since the perturbation makes the parcels 
more buoyant and hence causes them to go faster, they will complete the flow circuit 
in a shorter time than the unperturbed parcels. After they return to the boundary, 
their salt content will not be restored to their original state; instead they will lose 
more salt because of the negative salt-flux condition. Consequently, the particles will 
gain speed over each complete circuit of the perturbed cell. The salt-flux boundary 
condition therefore creates a positive feedback in particle speed. This continuous 
increase in speed will cause instability; it  will also favour asymmetry, since the 
assumed perturbation is not symmetric, nor will natural perturbations ever be 
perfectly symmetric. This is the essence of Marotzke et al.’s mechanism for the 
bifurcation. 

The mechanism just described can be used to understand one aspect of our 
stability curve, namely that as Ra increases, a smaller y is required for instability. 
There are two factors involved here. First, the non-dimensional salt flux is larger a t  
higher Rayleigh number because of the difference in the flow structures. Figure 15 
shows the vertical salinity gradient for Ra = lo8 and 5 x lo6 across the bottom 
boundary. Comparison of figure 5(a,  b )  with figure 6(a ,  b )  shows that the isotherms 
and isohalines are packed closer to the bottom at higher Rayleigh numbers. This 
compactness increases the vertical gradient of all fields near the boundary. 

Secondly, the strength of the concentrate is proportional to ma. Thus at higher 
Rayleigh number with h held constant, the effective salt flux increases because it is 
proportional to hRa(W/az). The feedback mechanism is more efficient for higher Ra 
because that implies a large salt flux, both in terms of Ra itself and in terms of aS/az. 
The fact that indeed the higher Ra, the lower is the critical value for y ,  supports the 
heuristic argument of a salt-flux feedback mechanism. The explanation of other 
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aspects of the curve in figure 14, namely of the apparent vertical and horizontal 
asymptotes, should help us understand better the bifurcation mechanism in the 
future. 

6. Conclusions and further work 
6.1. Summary 

We have studied thermosolutal convection for two-dimensional flows governed by 
the Navier-Stokes equations with the Boussinesq approximation, coupled to the full 
transport equations for heat and salt. Our results show that, when prescribing both 
temperature T and salinity S on the boundary symmetrically about the central 
vertical axis of the rectangular box containing the flow, a two-cell circulation with 
the same symmetry is the unique, stable solution. For convenience and compatibility 
with the earlier work of the lead author (Quon 1987), the inhomogeneous boundary 
conditions were imposed a t  the bottom, rather than the top boundary. Thus to 
compare directly the present results with those of previous authors and with oceanic 
circulation, all flow patterns have to be reflected in a horizontal axis through the 
centre of the box. 

We have confirmed that, when the prescribed salinity, called ‘restoring’ boundary 
condition by previous authors, is replaced by a salt-flux condition obtained by 
diagnosing this flux from the prescribed T- and S-solution, the symmetric solution 
becomes unstable. The solutions which become unstable for such mixed boundary 
conditions, restoring T but diagnosing the salt flux, are pairwise asymmetric, each 
having a mirror image in the central vertical axis : one has a dominant cell on the left, 
the other on the right. The emergence of one or the other asymmetric solution seems 
to be favoured by perturbing the symmetric flow, in the presence of mixed boundary 
conditions, within that half of the box where the cell is to grow. 

The transfer of stability from a single equilibrium to a pair of equilibria with 
mirror symmetry suggests the presence of a pitchfork bifurcation in the system. An 
important result of this study is that, in fact, the asymmetric states are not 
necessarily one-cell states, as suggested by some of the earlier work on the ocean’s 
thermohaline circulation (Bryan 1986; Marotzke et al. 1988), but that the dominant 
cell grows gradually away from the bifurcation point. At the high Rayleigh numbers 
Ra and very low aspect ratios d = H / L  considered by most of the above-cited 
authors, owing to their concern for oceanic verisimilitude, one-cell circulations do 
seem to be much more likely, the transitional Ra-range of coexistence between one 
large and one small cell being a t  lower values of Ra for such d. It is noteworthy, 
however, that the present-day circulation of the Atlantic Ocean (Fuglister 1960 ; 
Defant 1961) has in fact two very unequal cells, with North Atlantic Deep Water 
(NADW) forming in the Norwegian and Labrador Seas and flowing across the 
equator to rise again at the Antarctic Circumpolar Front, while Antarctic Bottom 
Water (AABW) forms in the Weddell Sea, flows northward through the South 
Atlantic under NADW and returns to rise with it along the same polar front. 

As in most fluid-dynamical problems, there are many non-dimensional parameters 
which affect the flow qualitatively, or at least quantitatively. Among these, the most 
important ones are Ra, d, the Lewis number 7 (the ratio of salt and heat diffusivities), 
the Prandtl number r, and the salt-flux strength on the boundary y (see equations 
(2.7), (2.8)). Of the six parameters in (2.8), the two which are essential to the 
bifurcation are Ra and y. We have explored changes in Ra by five orders of 
magnitude and in y by one order. 



Multiple equilibria in thermosolutal convection 475 

A neutral stability curve in the Ra-y plane (figure 14) separates the domain of 
stability of symmetric states from that of asymmetric ones. Bifurcation of the 
pairwise asymmetric states from the symmetric ones follows by traversing this curve 
at any point, whether increasing Ra, y ,  or both. Intuitively, it is clear that the system 
is stressed further by either increase, and therewith, as in many other physical, 
chemical and biological systems, that the symmetry decreases as the stress increases. 
The gradual increase of the degree of asymmetry away from the bifurcation point(s) 
is shown in figures 8 and 9. 

The effect of changes in three additional parameters, d ,  u and 7, each by about an 
order of magnitude, was also studied. A change in Prandtl number u from u = 2.25, 
used for convenience in most of the computations, to u = 7.1, the correct value for 
water, showed very little change in the solutions. The change in Lewis number 7 from 
7 = 1 .O, used for convenience in most of the computations, to the more realistic value 
of 7 = 0.10 (figure l l ) ,  is equivalent to an increase in Ra as far as tighter packing of 
isohalines close to the boundaries is concerned. 

The exploratory use of aspect ratio d = 1.0, rather than the more realistic d = 0.2 
used otherwise, shows that it corresponds to a lowering of the neutral stability 
curve in the y-Ra plane (figure 14). Most of the flow in the more highly stressed 
situations at unit aspect ratio (figures 4 , 5  and 6) still occurs in the lower, forced part 
of the container. While high aspect ratios, d = O(1) and higher, are not of primary 
interest for the oceanic application motivating the present study, a more thorough 
exploration of the effect of d ,  from d = O(lO+) to d = O(10), seems worthwhile from 
the broader perspective of fluid dynamics. 

Following earlier theoretical investigations, we have not included here the effects 
of rotation. OGCM (Bryan 1986) and coupled GCM (Manabe & Stouffer 1988) 
experiments suggest that the symmetry breaking of the ocean’s thermohaline 
circulation does occur in the presence of rotation as well. We expect to pursue 
systematically the effect of Coriolis forces in an idealized two-dimensional system 
similar to the present one. 

The general shape of the stability curve in figure 14 supports the physical 
mechanism of the salt-flux instability proposed by Marotzke et al. (1988) : once the 
salt content of a fluid parcel near the boundary is perturbed, that content, after a 
circuit in the flow cell to which the parcel belongs, will be restored by an imposed- 
salinity condition, but will be further modified - under appropriate circumstances 
- by a salt-flux condition, thus accelerating the parcel and increasing therewith the 
size of the cell to which it belongs. This mechanism is supported by the fact that, as 
Ra increases, a smaller y is required - in our numerical experiments - for instability. 
But the appearance of a limiting y-value, y % 0.3, for high Ra, and of a limiting Ra- 
value, Ra x lo6, for high y ,  seems to be a nonlinear effect not explained by this linear 
instability argument, and worthy of further investigation. 

6.2. Diwwsion 
While the idealized model studied here is far from the complexity of the oceans’ 
thermohaline circulations, past, present and future, certain analogies between our 
results so far, on the one hand, and documented or suspected features of these 
circulations, on the other, are too suggestive not to mention, at least in passing. 

The present circulation of the Atlantic is temperature-dominated and asymmetric, 
with deep waters forming near the poles and the northern cell dominating the 
southern one. Salinity-dominated circulations (Stommel 1961) however, are 
suspected to have occurred at peak glaciation, when the subpolar seas were 
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completely ice covered and no deep water could form there, as well as during much 
warmer climates such as the Cretaceous, when no substantial cooling occurred near 
the poles (Weyl 1968). In both cases, the densest waters available for sinking were 
at low latitudes, owing to enhanced evaporation, such as in today’s Mediterranean 
Sea. Recent evidence for a salinity-dominated (halothermal) circulation during the 
Eocene (58-36 million years ago) and for a mixed, salinity- and temperature- 
dominated (halothermal and thermohaline) circulation during the Oligocene (36-23 
million years ago) has been adduced by Kennett & Stott (1990, 1991). 

The thermohaline circulation in today’s Pacific Ocean is largely driven by that of 
the Atlantic, to which it is connected by the Antarctic Circumpolar Current. It has 
one cell, with deep waters travelling northward, rising and returning southward. 
Deep-water formation in the North Pacific has been hypothesized for different times 
in the past, although not conclusively documented by deep-sea core studies. On the 
other hand, enhancement of deep-water formation near Antarctica, to the detriment 
of NADW formation (Boyle & Keigwin 1987), has been shown to have occurred 
during certain phases of the last complete glacial cycle (150000 years ago until now), 
along with a marked northward expansion of the Atlantic’s southern cell (Duplessy 
et a2. 1988). 

A particularly intriguing aspect, in this perspective, of our results is the systematic 
exploration of the salt-flux intensity y ,  as it affects the thermohaline circulation. The 
excess salinity of the North Atlantic compared to the World Ocean, and the 
comparable salinity defect of the North Pacific have suggested to chemical 
oceanographers (Schnitker 1982; Broecker & Denton 1989) that changes in the 
atmosphere’s hydrologic cycle might affect substantially the ocean circulation, and 
vice versa. These ideas have been illustrated recently with preliminary numerical 
results by Wright & Stocker (1991), and could be tested more completely by an 
extension of our y-Ra bifurcation results to a more realistic ocean model, coupled to 
a minimal atmospheric model. Such an extension is being contemplated by the 
present authors, with their colleagues at UCLA. 
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Appendix A. Analytical results for low Ra 
The approximate analytical treatment given in Appendices A and B is meant to 

help understand some of the computational results, which are much more accurate 
and complete. Equations (2.3) and (2.4) for T and S are equivalent if we consider 
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7 = 1. The solutions are the same if we apply the same boundary conditions. 
Therefore, in order to obtain quasi-steady symmetric solutions, we need to solve 
(2.1)-(2.3), and (2 .5) ,  with Ra(T-AS) replaced by ARaT, A = 1 -A. 

For low Rayleigh number flows, Ra -+ 0, it is more appropriate to scale the stream 
function by KRa (Batchelor 1954). If we expand T, the temperature, and $, the 
stream function, in powers of Ra, the lowest-order equations are : 

V2T = 0, 

V4$ = - A *  T,, 
where -a$/& = u, and a$/ax = w. The boundary conditions are (2.6a-e). 

(A 1) is the heat diffusion equation for which we can obtain an exact solution with 
boundary conditions (2.6d, e ) .  In  order to satisfy aT/ax = 0 at x = 0, 1,  we shall 
represent T by a Fourier cosine series: 

m 

T(x, z )  = x f,(z) cos (nnx). 
n-0 

Substituting (A 3) into (A 1) we get 

The solution of (A 4) is 
a2fn(z)/az2- (nn),f,(z) = 0.  

f,(z) = a, enKz+bn ePKz, 
00 

T(x, z )  = cos (nxx) (a, enKz+ b ,  e-nKz). 
n-0 

In  order to satisfy boundary condition (2.6e) at z = 0 ,  we require 

(a,+b,) = t, (ao+bo) = -t, 
after applying (2 .6d)  at z = d ,  we have 

Hence, 

a, = b,  = 0 for n + 0 or 2 ;  

a, = b, ~ 3 - 4 ~ ~  = t - b , ,  b, = a. 
C O S ~  2n(d - Z) 

cosh 2nd 

with ( A 7 )  satisfying all boundary conditions in (2 .6d)  and (2.6e). When we 
substitute (A 7)  into the right-hand side of (A 2) ,  we have 

cash 2n(d - Z) V4$ = An sin 2nx 
cosh 2nd ' 

Let us assume (A 8) has a solution of the form 

An sin2nx ~ ( z ) ,  ' = cosh 2nd 

where Y(z) satisfies the equation: 

Y , , , , ( ~ ) - 2 2 ( 2 ~ ) ~  Y&)+ ( 2 ~ ) ~  Y(z) = cosh2n(d-z). (A 10) 

In order to satisfy the boundary conditions, let Y be of the form 
Q 

Y(z) = x p,sin (nnzld) .  
n-1 
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If we also expand cosh2n(d-z) in a sine series as 
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W 

cosh 2n(d -2) = C qn sin (nnzld), 
n-1 

where qn = (2/d) cosh 2n(d -2) sin (nnzld) dz 

2n 
4d2 + n2 

- -- {cash 2nd + (-  l)nf’}, 

(A 12) is valid over the whole range of z except at the boundary points, where the 
right-hand side of (A 8) is not required. If we substitute (A 12) and (A 13) into (A lo), 
and solve the resulting equations for each individual Fourier component, we obtain 

Pn = n4(n2 + 4a2)2 q n ,  
d4 

yielding 

{cosh 2nd + ( -  l)n+l} sin (nnzld). 
w 2na4 

The complete solution is 

The stream function $(x, z )  in (A 15) satisfies all the required boundary conditions, i.e. 
$(x,z)  = 0 at x =0,1, z = 0, d,  $zz = 0 at x = 0,1,  and $zz = O  at z = O .  

The z-structure of (A 15) is difficult to visualize from the infinite series (A 11) for 
Y(z). Noting, however, that the coefficients of sin(nnz) in (A 14) are inversely 
proportional to n5, we approximate (A 15) by its first term, 

2Ad4 ( 
‘r(xy ’) n4(4d2 + 1)3 + cosh 2nd )sin (2nz) sin (nzld) .  

This approximate solution represents a two-cell circulation. If we include the 
second term in (A 14), which has less than & of the amplitude of the first term, the 
cells will become slightly askew towards the bottom. This is in fact a distinct 
characteristic of the two cells in the symmetric states for Ra as high as lo6 and d = 
0.2 (figure 4). 

Obviously, the salinity distribution is the same as the temperature distribution 
(A 71, 

-I}, 
C O S ~  2n(d - Z )  

cosh 2nd 
S(x ,  2) = ; cos 2nx 

which also satisfies the following boundary condition at  z = 0 

&S’/az = -ncos2nxtanh2nd = f(x). (A 18) 
Note that as d -+ co , T and S approach uniform temperature and salinity values of -# 
at z = d,  which is the boundary value at z = 0, a quarter of the way from either side 
boundary (see figure 4c). 

Now if we use yf(z), withf(z) being given by (A 18), as the boundary condition for 
the salt equation, the solution for the temperature remains the same, (A 7), but the 
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solution for salt is changed by a factor of y .  The solution for $ is still given by (A 15), 
except now A = 1 -yh. This holds for h greater or smaller than unity, and also for 
positive or negative values of y ,  as long as ARa remains small. 

Appendix B. Analytical results at high Ra 

obtain the following equations (Gill 1966) : 
At high Reynolds number, Ra+ oc) we shall scale the stream function $ by K ~ .  We 

V4++ARa T, = (l/a) J ($ ,  V"), 
V2T = J($,  T ) .  

For a + oc) , which can be assumed for water with a = 7.1,  the right-hand side of (B 1) 
can be dropped, but (B 2) is still nonlinear. 

B .  1 .  The interior solutions 
In the interior of the enclosure, we shall assume that the solution is smooth. For 
sufficiently large Rayleigh number, (B 1 )  can be approximated by 

T, = 0. 

Hence T = T(z) .  

Substituting ( B  2 )  into (B l),  and assuming $ to be antisymmetric about x = a, we 
have 

p (x?  2) = ( T z z / T z )  (.-+I. (B 3) 

The interesting feature of (B 3) is that if T(z)  = e-az, then + = a(x-t), which is 
independent of z and is a linear function of x. It has been observed above in $4.2.1 (ii) 
that this is in fact a distinct characteristic of the high-Ra flow. Of course, these 
solutions do not satisfy the respective boundary conditions, for which we need 
boundary layers along all the boundaries. 

At extremely high Rayleigh number, the flow may become so strong that the 
nonlinear term in (B 1) is no longer negligible. In that case, even if T, = 0 in the 
interior, $ is governed by a nonlinear elliptic equation. The solution shown in figure 
6(d) for Ra = lo8 is a good example. Since (B 2) is nonlinear at  sufficiently high 
Rayleigh number and it is difficult to obtain even an approximate solution for it (see 
Gill 1966), we make only some order-of-magnitude estimates for the boundary scales 
here. 

B.2.  Approximate sidewall boundary-layer scale 
In order to gain some insight into the boundary-layer flows, we linearize near the 
boundary by using average values denoted by superscript (0). Near the sidewalls, the 
terms containing the x-derivatives become important. We consider the following 
approximate equations : 

$z,,, = --nRaT,, (B 4 4  

(B 4b) 

The second term on the right-hand side of ( B  46) can be dropped if do) is small. After 
eliminating T and using a stretched coordinate v = Raix, we have 

(B 5 )  

T,, = TLo' $, + d0)T,. 

$,,,, = -AT:'' $. 
The sidewall boundary layer scale is therefore R a t .  
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B.3. Approximate bottom boundary-layer scale 

By the argument that $z 4 $z, which is small in the bottom boundary layer, we have 

$ Z z z z + ~ R a T , = O ,  
+ T p  $z - W'O'T, = 0. 

If we eliminate $ we obtain 

T,,,,, - A Ra Tio) T, - w(O)T ZZLL = 0. 

T,,,,, 2 2  PPPP = O .  

(B 6) 

(B 7) 

Now if we use a stretched coordinate p = Rub, then ( B  6 )  becomes 

- AT(0) T - w(O)Ra-bT 

The last term in (B 7)  drops out if we assume Rai 4 do). The horizontal boundary- 
layer scale is therefore O(Ra-i), which is larger than the vertical boundary-layer scale 
of Ra-;. 

The sidewall and bottom boundary-layer structures obtained numerically in 
figure 7 seem to confirm the arguments presented here. 

Appendix C. Bifurcation diagram 
It is difficult to determine analytically the stability curve drawn approximately in 

figure 14, because eigenvalues have to be computed for a linearization of the 
governing equations (2.1)-(2.7) about a non-trivial basic state, and the dependence 
on the parameters (2.8) is highly implicit and nonlinear. In  this Appendix we use the 
numerical results for Rayleigh number Ra = 5 x lo6 as a function of y to construct 
a bifurcation diagram by nonlinear regression. The bifurcation point of this diagram 
provides an approximation to the critical value of y for Ra = 5 x lo6 in figure 14. 

Assuming pitchfork bifurcation as explained in Q 1 (see also Thual & McWilliams 
1992), we formally fit the data to the following model (Guckenheimer & Holmes 
1983) : 

where 4 can be any of the dynamical variables in the system, e.g. the maximum value 
of the stream function in the rectangle. Equation (C 1 )  describes a parabola whose 
axis is represented by the line 9 = $o and whose apex is at the bifurcation point (yo, 
4,). Given Ra and the other parameters in (2.8) fixed, the symmetric steady state 
loses its stability to either one of the two asymmetric states as y increases through 
the value yo. A, is a scaling factor that defines a family of curves with the same apex 
and the same axis of symmetry. 

We have used three different functionals of the stream function, @, defined below 
to represent 4 in equation (C 1) : 

Ao(4-40)z = Y-Yo, (C 1 )  

The results of seven separate numerical experiments, for y = 0.40, 0.425, 0.45, 
0.50, 0.55, 0.60, and 0.65 respectively, are used in the regression. All of them have 
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L 

Y- 
FIGURE 16. A pitchfork bifurcation diagram fitted by nonlinear regression to seven points obtained 
numerically (compare figure 14, Ra = 5 x los). The dots represent the experimental values of 
defmed by equation (C 2a). 

definite asymmetric circulations except the one for y = 0.40 which is symmetric. The 
three critical values of yo are found to be y r )  = 0.3962, yiz) = 0.4023, and yi3) = 
0.4033. The average value is 0.4006. An estimate of yo from figure 14 is in the 
neighbourhood of 0.40. 

us. y with the seven experimental values 
of 

Figure 16 gives the regression curve for 
shown as black dots. Both $z and q53 yield very similar curves. 
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